10 система исчисления. Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления. Задания на определение значений в различных системах счисления и их оснований

Перевод в десятичную систему счисления

Задание 1. Какому числу в десятичной системе счисления соответствует число 24 16 ?

Решение.

24 16 = 2 * 16 1 + 4 * 16 0 = 32 + 4 = 36

Ответ. 24 16 = 36 10

Задание 2. Известно, что X = 12 4 + 4 5 + 101 2 . Чему равно число X в десятичной системе счисления?

Решение.


12 4 = 1 * 41 + 2 * 40 = 4 + 2 = 6
4 5 = 4 * 5 0 = 4
101 2 = 1 * 2 2 + 0 * 2 1 + 1 * 2 0 = 4 + 0 + 1 = 5
Находим число: X = 6 + 4 + 5 = 15

Ответ. X = 15 10

Задание 3. Вычислите значение суммы 10 2 + 45 8 + 10 16 в десятичной системе счисления.

Решение.

Переведем каждое слагаемое в десятичную систему счисления:
10 2 = 1 * 2 1 + 0 * 2 0 = 2
45 8 = 4 * 8 1 + 5 * 8 0 = 37
10 16 = 1 * 16 1 + 0 * 16 0 = 16
Сумма равна: 2 + 37 + 16 = 55

Перевод в двоичную систему счисления

Задание 1. Чему равно число 37 в двоичной системе счисления?

Решение.

Можно выполнить преобразование делением на 2 и комбинацией остатков в обратном порядке.

Другой способ – это разложить число на сумму степеней двойки, начиная со старшей, вычисляемый результат которой меньше данного числа. При преобразовании пропущенные степени числа следует заменять нулями:

37 10 = 32 + 4 + 1 = 2 5 + 2 2 + 2 0 = 1 * 2 5 + 0 * 2 4 + 0 * 2 3 + 1 * 2 2 + 0 * 2 1 + 1 * 2 0 = 100101

Ответ. 37 10 = 100101 2 .

Задание 2. Сколько значащих нулей в двоичной записи десятичного числа 73?

Решение.

Разложим число 73 на сумму степеней двойки, начиная со старшей и умножая пропущенные степени в дальнейшем на нули, а существующие на единицу:

73 10 = 64 + 8 + 1 = 2 6 + 2 3 + 2 0 = 1 * 2 6 + 0 * 2 5 + 0 * 2 4 + 1 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 1001001

Ответ. В двоичной записи десятичного числа 73 присутствует четыре значащих нуля.

Задание 3. Вычислите сумму чисел x и y при x = D2 16 , y = 37 8 . Результат представьте в двоичной системе счисления.

Решение.

Вспомним, что каждая цифра шестнадцатеричного числа формируется четырьмя двоичными разрядами, каждая цифра восьмеричного числа – тремя:

D2 16 = 1101 0010
37 8 = 011 111

Сложим полученные числа:

11010010 11111 -------- 11110001

Ответ. Сумма чисел D2 16 и y = 37 8 , представленная в двоичной системе счисления равна 11110001.

Задание 4. Дано: a = D7 16 , b = 331 8 . Какое из чисел c , записанных в двоичной системе счисления, отвечает условию a < c < b ?

  1. 11011001
  2. 11011100
  3. 11010111
  4. 11011000

Решение.

Переведем числа в двоичную систему счисления:

D7 16 = 11010111
331 8 = 11011001

Первые четыре разряда у всех чисел совпадают (1101). Поэтому сравнение упрощается до сравнения младших четырех разрядов.

Первое число из перечня равно числу b , следовательно, не подходит.

Второе число больше как b . Третье число равно a .

Только четвертое число подходит: 0111 < 1000 < 1001.

Ответ. Четвертый вариант (11011000) отвечает условию a < c < b .

Задания на определение значений в различных системах счисления и их оснований

Задание 1. Для кодирования символов @, $, &, % используются двухразрядные последовательные двоичные числа. Первому символу соответствует число 00. С помощью данных символов была закодирована такая последовательность: $%&&@$. Декодируйте данную последовательность и переведите результат в шестнадцатеричную систему счисления.

Решение.

1. Сопоставим двоичные числа кодируемым ими символам:
00 - @, 01 - $, 10 - &, 11 - %

3. Переведем двоичное число в шестнадцатеричную систему счисления:
0111 1010 0001 = 7A1

Ответ. 7A1 16 .

Задание 2. В саду 100 x фруктовых деревьев, из которых 33 x – яблони, 22 x – груши, 16 x – сливы, 17 x - вишни. Чему равно основание системы счисления (x).

Решение.

1. Заметим, что все слагаемые – двузначные числа. В любой системе счисления их можно представить так:
a * x 1 + b * x 0 = ax + b, где a и b – это цифры соответствующих разрядов числа.
Для трехзначного числа будет так:
a * x 2 + b * x 1 + c * x 0 = ax 2 + bx + c

2. Условие задачи таково:
33 x + 22 x + 16 x + 17 x = 100 x
Подставим числа в формулы:
3x + 3 + 2x +2 + 1x + 6 + 1x + 7 = 1x 2 + 0x + 0
7x + 18 = x 2

3. Решим квадратное уравнение:
-x2 + 7x + 18 = 0
D = 7 2 – 4 * (-1) * 18 = 49 + 72 = 121. Квадратный корень из D равен 11.
Корни квадратного уравнения:
x = (-7 + 11) / (2 * (-1)) = -2 или x = (-7 - 11) / (2 * (-1)) = 9

4. Отрицательное число не может быть основанием системы счисления. Поэтому x может быть равен только 9.

Ответ. Искомое основание системы счисления равно 9.

Задание 3. В системе счисления с некоторым основанием десятичное число 12 записывается как 110. Найдите это основание.

Решение.

Сначала распишем число 110 через формулу записи чисел в позиционных системах счисления для нахождения значения в десятичной системе счисления, а затем найдем основание методом перебора.

110 = 1 * x 2 + 1 * x 1 + 0 * x 0 = x 2 + x

Нам надо получить 12. Пробуем 2: 2 2 + 2 = 6. Пробуем 3: 3 2 + 3 = 12.

Значит основание системы счисления равно 3.

Ответ. Искомое основание системы счисления равно 3.

Задание 4. В какой системе счисления десятичное число 173 будет представлено как 445?

Решение .
Обозначим неизвестное основание за Х. Запишем следующее уравнение:
173 10 = 4*Х 2 + 4*Х 1 + 5*Х 0
С учетом того, что любое положительное число в нулевой степени равно 1 перепишем уравнение (основание 10 не будем указывать).
173 = 4*Х 2 + 4*Х + 5
Конечно, подобное квадратное уравнение можно решить с помощью дискриминанта, но есть более простое решение. Вычтем из правой и левой части по 4. Получим
169 = 4*Х 2 + 4*Х + 1 или 13 2 = (2*Х+1) 2
Отсюда получаем 2*Х +1 = 13 (отрицательный корень отбрасываем). Или Х = 6.
Ответ: 173 10 = 445 6

Задачи на нахождение нескольких оснований систем счисления

Есть группа задач, в которых требуется перечислить (в порядке возрастания или убывания) все основания систем счисления, в которых представление данного числа заканчивается на заданную цифру. Эта задача решается довольно просто. Сначала нужно из исходного числа вычесть заданную цифру. Получившееся число и будет первым основанием системы счисления. А все другие основания могут быть только делителями этого числа. (Данное утверждение доказывается на основе правила перевода чисел из одной системы счисления в другую – см. п.4). Помните только, что основание системы счисления не может быть меньше заданной цифры !

Пример
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 24 оканчивается на 3.

Решение
24 – 3 =21 – это первое основание (13 21 = 13*21 1 +3*21 0 = 24).
21 делится на 3 и на 7. Число 3 не подходит, т.к. в системе счисления с основанием 3 нет цифры 3.
Ответ: 7, 21

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.

Задачи по теме "Системы счисления"

Примеры решения

Задание №1. Сколько значащих цифр в записи десятичного числа 357 в системе счисления с основанием 3? Решение: Переведём число 35710 в троичную систему счисления: Итак, 35710 = 1110203. Число 1110203 содержит 6 значащих цифр. Ответ: 6.

Задание №2. Дано А=A715, B=2518. Какое из чисел C, записанных в двоичной системе, отвечает условию A 1) 101011002 2) 101010102 3) 101010112 4) 101010002 Решение: Переведём числа А=A715 и B=2518 в двоичную систему счисления, заменив каждую цифру первого числа соответствующей тетрадой, а каждую цифру второго числа – соответствующей триадой: A715= 1010 01112; 2518 = 010 101 0012. Условию a

Задание №3. На какую цифру оканчивается запись десятичного числа 123 в системе счисления с основанием 6? Решение: Переведём число 12310 в систему счисления с основанием 6: 12310 = 3236. Ответ: Запись числа 12310 в системе счисления с основанием 6 оканчивается на цифру 3. Задания на выполнение арифметических действий над числами, представленными в разных системах счисления

Задание №4. Вычислите сумму чисел X и Y, если X=1101112, Y=1358. Результат представьте в двоичном виде. 1) 100100112 2) 100101002 3) 110101002 4) 101001002 Решение: Переведём число Y=1358 в двоичную систему счисления, заменив каждую его цифру соответствующей триадой: 001 011 1012. Выполним сложение: Ответ: 100101002 (вариант 2).

Задание №5. Найдите среднее арифметическое чисел 2368, 6С16 и 1110102. Ответ представьте в десятичной системе счисления. Решение: Переведём числа 2368, 6С16 и 1110102 в десятичную систему счисления:
Вычислим среднее арифметическое чисел: (158+108+58)/3 = 10810. Ответ: среднее арифметическое чисел 2368, 6С16 и 1110102 равно 10810.

Задание №6. Вычислите значение выражения 2068 + AF16 ? 110010102. Вычисления производите в восьмеричной системе счисления. Переведите ответ в десятичную систему. Решение: Переведём все числа в восьмеричную систему счисления: 2068 = 2068; AF16 = 2578; 110010102 = 3128 Сложим числа: Переведём ответ в десятичную систему: Ответ:51110.

Задания на нахождение основания системы счисления

Задание №7. В саду 100q фруктовых деревьев: из них 33q яблони, 22q груши, 16q слив и 17q вишен. Найдите основание системы счисления, в которой посчитаны деревья. Решение: Всего в саду 100q деревьев: 100q = 33q+22q+16q+17q. Пронумеруем разряды и представим данные числа в развёрнутой форме:
Ответ: Деревья посчитаны в системе счисления с основанием 9.

Задание №8. Найдите основание x системы счисления, если известно, что 2002x = 13010. Решение: Ответ:4.

Задание №9. В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание. Решение: Примем за х основание неизвестной системы счисления и составим следующее равенство: 1810 = 30x; Пронумеруем разряды и запишем данные числа в развёрнутой форме: Ответ: десятичное число 18 записывается в виде 30 в системе счисления с основанием 6.

Назначение сервиса . Сервис предназначен для перевода чисел из одной системы счисления в другую в онлайн режиме. Для этого выберите основание системы, из которой необходимо перевести число. Вводить можно как целые, так и числа с запятой.

Можно вводить как целые числа, например 34 , так и дробные, например, 637.333 . Для дробных чисел указывается точность перевода после запятой.

Вместе с этим калькулятором также используют следующие:

Способы представления чисел

Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.
Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0...9, А, В, ..., F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.
Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.
Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

Алгоритм перевода чисел из одной системы счисления в другую

Перевод целых десятичных чисел в любую другую системы счисления осуществляется делением числа на основание новой системы счисления до тех пор, пока в остатке не останется число меньшее основания новой системы счис­ления. Новое число записывается в виде остатков деления, начиная с последнего.
Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода. В результате выполнения каждой операции умножения формируется одна цифра нового числа начиная со старшего.
Перевод неправильной дроби осуществляется по 1 и 2 правилу. Целую и дробную часть записывают вместе, отделяя запятой.

Пример №1 .



Перевод из 2 в 8 в 16 системы счисления.
Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

Пример №2 . 1010111010,1011 = 1.010.111.010,101.1 = 1272,51 8
здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.
Пример №3 . 1010111010,1011 = 10.1011.1010,1011 = 2B12,13 HEX
здесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2 , 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

Пример №4 .
Пример перевода из двоичной в десятичную систему счисления.

1010010,101 2 = 1·2 6 +0·2 5 +1·2 4 +0·2 3 +0·2 2 +1·2 1 +0·2 0 + 1·2 -1 +0·2 -2 +1·2 -3 =
= 64+0+16+0+0+2+0+0.5+0+0.125 = 82.625 10 Пример перевода из восьмеричной в десятичную систему счисления. 108.5 8 = 1*·8 2 +0·8 1 +8·8 0 + 5·8 -1 = 64+0+8+0.625 = 72.625 10 Пример перевода из шестнадцатеричной в десятичную систему счисления. 108.5 16 = 1·16 2 +0·16 1 +8·16 0 + 5·16 -1 = 256+0+8+0.3125 = 264.3125 10

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.
      Например, 1000110 = 1 000 110 = 106 8
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.
      Например, 1000110 = 100 0110 = 46 16
Позиционной называется система , для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.
Таблица соответствия систем счисления:
Двоичная СС Шестнадцатеричная СС
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Таблица для перевода в восьмеричную систему счисления

Пример №2 . Перевести число 100,12 из десятичной системы счисления в восьмеричную систему счисления и обратно. Пояснить причины расхождений.
Решение .
1 Этап. .

Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
100 = 144 8

Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
0.12*8 = 0.96 (целая часть 0 )
0.96*8 = 7.68 (целая часть 7 )
0.68*8 = 5.44 (целая часть 5 )
0.44*8 = 3.52 (целая часть 3 )
Получаем число в 8-ой системе счисления: 0753.
0.12 = 0.753 8

100,12 10 = 144,0753 8

2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления .
Обратный перевод из восьмеричной системы счислений в десятичную.

Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
0753 = 8 -1 *0 + 8 -2 *7 + 8 -3 *5 + 8 -4 *3 = 0.119873046875 = 0.1199

144,0753 8 = 100,96 10
Разница в 0,0001 (100,12 - 100,1199) объясняется погрешностью округлений при переводе в восьмеричную систему счислений. Эту погрешность можно уменьшить, если взять большее число разрядов (например, не 4, а 8).

Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.

Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:

Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.

Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.

Например, . Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = ).

Вернемся опять к привычной десятичной системе. Число = 100000. Т.е. 10 в степени k– это единица и k нулей.

Аналогичное утверждение справедливо для любой системы счисления:

Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.

Например, .

1. Поиск основания системы счисления

Пример 1.

В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда .Т.е. x = 9.

Пример 2.

В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.

Решение:

Обозначим искомое основание x. Тогда

Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.

Ответ: 3

Пример 3

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.

Решение:

Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,

Ответ: 6, 8, 12, 24

Пример 4

Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.

Решение:

Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).

Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.

Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.

2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:

68:4 = 17; 17:4 = 4 (ост 1) – подходит

68:17 = 4; 4:17 = 0 (ост 4) – не подходит

68:34 = 2; 2:17 = 0 (ост 2) – не подходит

68:68 = 1; 1:68 = 0 (ост 1) – подходит

Ответ: 4, 68

2. Поиск чисел по условиям

Пример 5

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

Решение:

Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.

Т.е. нам нужно найти все числа, не больше , запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
получаем числа и . Переводим их в десятичную систему счисления:

Ответ: 5, 21

3. Решение уравнений

Пример 6

Решите уравнение:

Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

Решение:

Переведем все числа в десятичную систему счисления:

Квадратное уравнение имеет корни -8 и 6. (т.к. основание системы не может быть отрицательным). .

Ответ: 20

4. Подсчет количества единиц (нулей) в двоичной записи значения выражения

Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:

При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.

При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.

Пример 7

Сколько единиц содержится в двоичной записи значения выражения: ?

Решение:

Представим все числа выражения, как степени двойки:

В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя и , получим число, содержащее 2 единицы:

Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.

Теперь прибавляем к получившемуся числу 1:

Видим, что у результата 2013+1+1=2015 единиц.