Svi prirodni brojevi su manji od 5. Prirodni brojevi. Niz prirodnih brojeva. Osnovna svojstva prirodnih brojeva

Integers- to su brojevi koji se koriste prilikom brojanja objekata. Prirodni brojevi ne uključuju:

  • Negativni brojevi (na primjer -1, -2, -100).
  • Razlomci (na primjer, 1,1 ili 6/89).
  • Broj 0.

Zapišite prirodne brojeve koji su manji od 5

Bit će nekoliko takvih brojeva:
1, 2, 3, 4 - sve su to prirodni brojevi koji su manji od 5. Takvih brojeva više nema.
Sada ostaje da zapišemo brojeve koji su suprotni pronađenim prirodnim brojevima. Suprotnosti podataka su brojevi koji imaju suprotan predznak (drugim riječima, to su brojevi pomnoženi sa -1). Da bismo pronašli suprotne brojeve brojevima 1, 2, 3, 4, moramo sve ove brojeve napisati sa suprotnim predznakom (pomnožiti sa -1). uradimo to:
-1, -2, -3, -4 - sve su to brojevi koji su suprotni brojevima 1, 2, 3, 4. Zapišimo odgovor.
Odgovor: prirodni brojevi manji od 5 su brojevi 1, 2, 3, 4;
brojevi koji su suprotni pronađenim brojevima su brojevi -1, -2, -3, -4.

Istorija prirodnih brojeva počela je u primitivnim vremenima. Od davnina ljudi su brojali predmete. Na primjer, u trgovini vam je bio potreban račun robe ili u građevinarstvu račun materijala. Da, čak i u svakodnevnom životu morao sam da brojim stvari, hranu, stoku. U početku su se brojevi koristili samo za brojanje u životu, u praksi, da bi kasnije, razvojem matematike, postali dio nauke.

Integers- ovo su brojevi koje koristimo kada brojimo predmete.

Na primjer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Nula nije prirodan broj.

Svi prirodni brojevi, ili recimo skup prirodnih brojeva, označeni su simbolom N.

Tabela prirodnih brojeva.

Prirodne serije.

Prirodni brojevi napisani u nizu u rastućem obliku prirodne serije ili niz prirodnih brojeva.

Svojstva prirodnog niza:

  • Najmanji prirodni broj je jedan.
  • U prirodnom nizu, sljedeći broj je veći od prethodnog. (1, 2, 3, ...) Postavljaju se tri tačke ili elipse ako je nemoguće dovršiti niz brojeva.
  • Prirodni niz nema najveći broj, on je beskonačan.

Primjer #1:
Napiši prvih 5 prirodnih brojeva.
Rješenje:
Prirodni brojevi počinju od jedan.
1, 2, 3, 4, 5

Primjer #2:
Da li je nula prirodan broj?
Odgovor: ne.

Primjer #3:
Koji je prvi broj u prirodnom nizu?
Odgovor: Prirodni niz počinje od jedan.

Primjer #4:
Koji je zadnji broj u prirodnom nizu? Koji je najveći prirodni broj?
Odgovor: Prirodni niz počinje sa jednim. Svaki sljedeći broj je veći od prethodnog, tako da posljednji broj ne postoji. Ne postoji najveći broj.

Primjer #5:
Da li jedan u prirodnom nizu ima prethodni broj?
Odgovor: ne, jer je jedan prvi broj u prirodnom nizu.

Primjer #6:
Imenujte sljedeći broj u prirodnom nizu: a)5, b)67, c)9998.
Odgovor: a)6, b)68, c)9999.

Primjer #7:
Koliko brojeva ima u prirodnom nizu između brojeva: a) 1 i 5, b) 14 i 19.
Rješenje:
a) 1, 2, 3, 4, 5 – tri broja su između brojeva 1 i 5.
b) 14, 15, 16, 17, 18, 19 – četiri broja su između brojeva 14 i 19.

Primjer #8:
Izgovorite prethodni broj nakon 11.
Odgovor: 10.

Primjer #9:
Koji se brojevi koriste prilikom brojanja objekata?
Odgovor: prirodni brojevi.

Jednostavno rečeno, to je povrće kuhano u vodi po posebnoj recepturi. Razmotrit ću dvije početne komponente (salata od povrća i voda) i gotov rezultat - boršč. Geometrijski, može se zamisliti kao pravougaonik, pri čemu jedna strana predstavlja zelenu salatu, a druga vodu. Zbir ove dvije strane će pokazati boršč. Dijagonala i površina takvog pravokutnika "boršč" su čisto matematički koncepti i nikada se ne koriste u receptima za boršč.


Kako se salata i voda pretvaraju u boršč sa matematičke tačke gledišta? Kako zbir dva segmenta može postati trigonometrija? Da bismo ovo razumjeli, potrebne su nam linearne ugaone funkcije.


Nećete naći ništa o linearnim ugaonim funkcijama u udžbenicima matematike. Ali bez njih ne može biti matematike. Zakoni matematike, kao i zakoni prirode, djeluju bez obzira na to znamo li za njihovo postojanje ili ne.

Linearne ugaone funkcije su zakoni sabiranja. Pogledajte kako se algebra pretvara u geometriju, a geometrija u trigonometriju.

Je li moguće bez linearnih kutnih funkcija? Moguće je, jer matematičari se i dalje snalaze bez njih. Trik matematičara je u tome što nam uvijek govore samo o onim problemima koje sami znaju riješiti, a nikada ne govore o onim problemima koje ne mogu riješiti. Pogledaj. Ako znamo rezultat sabiranja i jednog člana, koristimo oduzimanje da pronađemo drugi član. Sve. Ne poznajemo druge probleme i ne znamo kako ih riješiti. Šta da radimo ako znamo samo rezultat sabiranja, a ne znamo oba pojma? U ovom slučaju, rezultat sabiranja se mora razložiti na dva člana korištenjem linearnih kutnih funkcija. Zatim sami biramo šta može biti jedan pojam, a linearne ugaone funkcije pokazuju kakav treba da bude drugi član, tako da rezultat sabiranja bude upravo ono što nam treba. Može postojati beskonačan broj takvih parova pojmova. IN Svakodnevni život Možemo da radimo sasvim dobro bez razlaganja zbira; oduzimanje nam je dovoljno. Ali u naučnom istraživanju zakona prirode, razlaganje zbroja na njegove komponente može biti vrlo korisno.

Još jedan zakon sabiranja o kojem matematičari ne vole da govore (još jedan od njihovih trikova) zahtijeva da termini imaju iste mjerne jedinice. Za salatu, vodu i boršč, to mogu biti jedinice težine, zapremine, vrijednosti ili jedinice mjere.

Na slici su prikazana dva nivoa razlike za matematičku . Prvi nivo su razlike u polju brojeva koje su naznačene a, b, c. To rade matematičari. Drugi nivo su razlike u polju mernih jedinica koje su prikazane u uglastim zagradama i označene slovom U. To rade fizičari. Možemo razumjeti treći nivo - razlike u površini objekata koji se opisuju. Različiti objekti mogu imati isti broj identičnih mjernih jedinica. Koliko je to važno, možemo vidjeti na primjeru boršč trigonometrije. Ako dodamo indekse istoj oznaci jedinice za različite objekte, možemo tačno reći koja matematička veličina opisuje određeni objekt i kako se mijenja tokom vremena ili zbog naših radnji. Pismo W Vodu ću označiti slovom S Salatu ću označiti slovom B- boršč. Ovako će izgledati linearne kutne funkcije za boršč.

Ako uzmemo dio vode i dio salate, zajedno će se pretvoriti u jednu porciju boršča. Ovdje predlažem da se malo odmorite od boršča i prisjetite se svog dalekog djetinjstva. Sjećate se kako su nas učili da spajamo zečiće i patke? Trebalo je pronaći koliko će životinja biti. Šta su nas tada učili da radimo? Učili su nas da odvajamo mjerne jedinice od brojeva i sabiramo brojeve. Da, bilo koji broj se može dodati bilo kojem drugom broju. Ovo je direktan put ka autizmu moderne matematike - mi radimo neshvatljivo šta, neshvatljivo zašto, i vrlo slabo razumemo kako se to odnosi na stvarnost, zbog tri nivoa razlike, matematičari operišu samo sa jednim. Bilo bi ispravnije naučiti kako preći s jedne mjerne jedinice na drugu.

Zečići, patke i male životinje mogu se prebrojati u komadima. Jedna zajednička mjerna jedinica za različite objekte nam omogućava da ih saberemo. Ovo je dječja verzija problema. Pogledajmo sličan zadatak za odrasle. Šta dobijete kada dodate zečiće i novac? Ovdje postoje dva moguća rješenja.

Prva opcija. Određujemo tržišnu vrijednost zečića i dodajemo je raspoloživoj količini novca. Dobili smo ukupnu vrijednost našeg bogatstva u novčanom smislu.

Druga opcija. Broj zečića možete dodati broju novčanica koje imamo. Dobit ćemo iznos pokretne imovine u komadima.

Kao što vidite, isti zakon sabiranja vam omogućava da dobijete različite rezultate. Sve zavisi od toga šta tačno želimo da znamo.

No, vratimo se našem boršu. Sada možemo vidjeti što će se dogoditi za različite vrijednosti kutova linearnih kutnih funkcija.

Ugao je nula. Imamo salatu, ali nemamo vodu. Ne možemo da kuvamo boršč. Količina boršča je također nula. To uopće ne znači da je nula boršča jednaka nuli vode. Može biti nulti boršč sa nula salate (pravi ugao).


Za mene lično, ovo je glavni matematički dokaz činjenice da . Nula ne mijenja broj kada se doda. To se dešava zato što je samo zbrajanje nemoguće ako postoji samo jedan član, a drugi član nedostaje. Možete osjećati ovo kako hoćete, ali zapamtite - sve matematičke operacije s nulom izmislili su sami matematičari, pa odbacite svoju logiku i glupo trpajte definicije koje su izmislili matematičari: "podjela nulom je nemoguće", "bilo koji broj pomnožen sa nula jednaka nuli” , “izvan tačke punkcije nule” i druge gluposti. Dovoljno je jednom zapamtiti da nula nije broj i nikada više nećete imati pitanje da li je nula prirodan broj ili nije, jer takvo pitanje gubi svaki smisao: kako se nešto što nije broj može smatrati brojem ? To je kao da se pitate u koju boju treba klasifikovati nevidljivu boju. Dodavanje nule broju je isto kao i slikanje bojom koje nema. Mahali smo suvim kistom i rekli svima da smo "farbali". Ali malo sam skrenuo pažnju.

Ugao je veći od nule, ali manji od četrdeset pet stepeni. Imamo puno zelene salate, ali nema dovoljno vode. Kao rezultat toga, dobit ćemo debeli boršč.

Ugao je četrdeset pet stepeni. Imamo jednake količine vode i salate. Ovo je savršeni boršč (oprostite, kuhari, to je samo matematika).

Ugao je veći od četrdeset pet stepeni, ali manji od devedeset stepeni. Imamo puno vode i malo salate. Dobićete tečni boršč.

Pravi ugao. Imamo vodu. Od salate su ostale samo uspomene, dok nastavljamo da merimo ugao od linije koja je nekada označavala salatu. Ne možemo da kuvamo boršč. Količina boršča je nula. U ovom slučaju, držite se i pijte vodu dok je imate)))

Evo. Ovako nešto. Ovdje mogu ispričati druge priče koje bi ovdje bile više nego primjerene.

Dva prijatelja su imala svoje udjele u zajedničkom poslu. Nakon što su ubili jednog od njih, sve je otišlo drugom.

Pojava matematike na našoj planeti.

Sve ove priče su ispričane jezikom matematike koristeći linearne ugaone funkcije. Neki drugi put ću vam pokazati pravo mjesto ovih funkcija u strukturi matematike. U međuvremenu, vratimo se na boršč trigonometriju i razmotrimo projekcije.

Subota, 26.10.2019

Srijeda, 07.08.2019

Završavajući razgovor o tome, moramo razmotriti beskonačan skup. Poenta je da koncept "beskonačnosti" utiče na matematičare kao što udav utiče na zeca. Drhtavi užas beskonačnosti lišava matematičare zdrav razum. Evo primjera:

Izvorni izvor se nalazi. Alfa označava pravi broj. Znak jednakosti u gornjim izrazima pokazuje da ako dodate broj ili beskonačnost beskonačnosti, ništa se neće promijeniti, rezultat će biti ista beskonačnost. Ako za primjer uzmemo beskonačan skup prirodnih brojeva, onda se razmatrani primjeri mogu predstaviti u ovom obliku:

Kako bi jasno dokazali da su bili u pravu, matematičari su smislili mnogo različitih metoda. Lično, na sve ove metode gledam kao na šamane koji plešu uz tamburaše. U suštini, svi se svode na to da su ili neke sobe prazne i da se useljavaju novi gosti, ili da se neki od posjetitelja izbace u hodnik kako bi napravili mjesta za goste (vrlo ljudski). Svoje viđenje takvih odluka iznio sam u formi fantastične priče o Plavuši. Na čemu se zasniva moje rezonovanje? Premještanje beskonačnog broja posjetitelja traje beskonačno vrijeme. Nakon što oslobodimo prvu sobu za gosta, jedan od posetilaca će uvek hodati hodnikom od svoje sobe do sledeće do kraja vremena. Naravno, faktor vremena se može glupo zanemariti, ali ovo će biti u kategoriji „nijedan zakon nije pisan za budale“. Sve zavisi od toga šta radimo: prilagođavamo stvarnost matematičkim teorijama ili obrnuto.

Šta je "beskonačan hotel"? Beskonačan hotel je hotel koji uvijek ima bilo koji broj praznih kreveta, bez obzira na to koliko je soba zauzeto. Ako su sve sobe u beskonačnom hodniku za "posetioce" zauzete, postoji još jedan beskonačni hodnik sa "gostinjskim" sobama. Postojaće beskonačan broj takvih koridora. Štaviše, „beskonačni hotel“ ima beskonačan broj spratova u beskonačnom broju zgrada na beskonačnom broju planeta u beskonačnom broju univerzuma koje je stvorio beskonačan broj bogova. Matematičari nisu u stanju da se distanciraju od banalnih svakodnevnih problema: uvijek postoji samo jedan Bog-Allah-Buda, postoji samo jedan hotel, postoji samo jedan hodnik. Dakle, matematičari pokušavaju da žongliraju serijskim brojevima hotelskih soba, uvjeravajući nas da je moguće “ugurati nemoguće”.

Pokazat ću vam logiku svog razmišljanja na primjeru beskonačnog skupa prirodnih brojeva. Prvo morate odgovoriti na vrlo jednostavno pitanje: koliko skupova prirodnih brojeva postoji - jedan ili više? Ne postoji tačan odgovor na ovo pitanje, jer smo sami izmislili brojeve; brojevi ne postoje u prirodi. Da, priroda je odlična u brojanju, ali za to koristi druge matematičke alate koji nam nisu poznati. Reći ću vam šta priroda misli drugi put. Pošto smo izmislili brojeve, sami ćemo odlučiti koliko skupova prirodnih brojeva ima. Razmotrimo obje opcije, kako i priliči pravim naučnicima.

Opcija jedan. “Neka nam se da” jedan jedini set prirodnih brojeva, koji mirno leži na polici. Uzimamo ovaj set sa police. To je to, nema drugih prirodnih brojeva na polici i nigdje ih uzeti. Ne možemo ga dodati ovom skupu, jer ga već imamo. Šta ako zaista želiš? Nema problema. Možemo uzeti jedan iz seta koji smo već uzeli i vratiti na policu. Nakon toga možemo uzeti jednu s police i dodati je onome što nam je ostalo. Kao rezultat, opet ćemo dobiti beskonačan skup prirodnih brojeva. Sve naše manipulacije možete zapisati ovako:

Zapisao sam radnje u algebarskoj notaciji i u teoriji skupova, sa detaljnim popisom elemenata skupa. Indeks označava da imamo jedan jedini skup prirodnih brojeva. Ispada da će skup prirodnih brojeva ostati nepromijenjen samo ako se od njega oduzme jedan i doda ista jedinica.

Opcija dva. Na našoj polici imamo mnogo različitih beskonačnih skupova prirodnih brojeva. Naglašavam - RAZLIČITIH, uprkos tome što se praktično ne razlikuju. Uzmimo jedan od ovih setova. Zatim uzimamo jedan iz drugog skupa prirodnih brojeva i dodajemo ga skupu koji smo već uzeli. Možemo čak dodati dva skupa prirodnih brojeva. Evo šta dobijamo:

Podskripti "jedan" i "dva" označavaju da su ovi elementi pripadali različitim skupovima. Da, ako dodate jedan beskonačnom skupu, rezultat će također biti beskonačan skup, ali neće biti isti kao originalni skup. Ako jednom beskonačnom skupu dodate još jedan beskonačan skup, rezultat je novi beskonačan skup koji se sastoji od elemenata prva dva skupa.

Skup prirodnih brojeva koristi se za brojanje na isti način kao što se ravnalo za mjerenje. Sada zamislite da ste lenjiru dodali jedan centimetar. Ovo će biti drugačija linija, koja neće biti jednaka originalnoj.

Možete prihvatiti ili ne prihvatiti moje obrazloženje - to je vaša stvar. Ali ako ikada naiđete na matematičke probleme, razmislite da li slijedite put lažnog rasuđivanja kojim su kročile generacije matematičara. Uostalom, časovi matematike, prije svega, u nama formiraju stabilan stereotip mišljenja, a tek onda doprinose našem mentalne sposobnosti(ili obrnuto, lišavaju nas slobodnog mišljenja).

pozg.ru

Nedjelja, 04.08.2019

Završavao sam postskriptum za članak o i vidio ovaj divan tekst na Wikipediji:

Čitamo: "...bogata teorijska osnova matematike Babilona nije imala holistički karakter i bila je svedena na skup različitih tehnika, lišenih zajedničkog sistema i baze dokaza."

Vau! Koliko smo pametni i koliko dobro vidimo nedostatke drugih. Da li nam je teško da savremenu matematiku posmatramo u istom kontekstu? Malo parafrazirajući gornji tekst, lično sam dobio sljedeće:

Bogata teorijska osnova moderne matematike nije holističke prirode i svedena je na skup različitih sekcija, lišenih zajedničkog sistema i baze dokaza.

Neću ići daleko da potvrdim svoje riječi - ima jezik i konvencije koje se razlikuju od jezika i simboli mnoge druge grane matematike. Isti nazivi u različitim granama matematike mogu imati različita značenja. Želim da posvetim čitav niz publikacija najočitijim greškama moderne matematike. Vidimo se uskoro.

Subota 03.08.2019

Kako podijeliti skup na podskupove? Da biste to učinili, potrebno je unijeti novu mjernu jedinicu koja je prisutna u nekom od elemenata odabranog skupa. Pogledajmo primjer.

Neka nam bude dosta A koji se sastoji od četiri osobe. Ovaj skup je formiran na osnovu "ljudi". Označimo elemente ovog skupa slovom A, indeks sa brojem će označavati serijski broj svake osobe u ovom skupu. Hajde da uvedemo novu mjernu jedinicu "pol" i označimo je slovom b. Pošto su seksualne karakteristike svojstvene svim ljudima, svaki element skupa umnožavamo A na osnovu spola b. Primijetite da je naš skup “ljudi” sada postao skup “ljudi s rodnim karakteristikama”. Nakon toga možemo podijeliti spolne karakteristike na muške bm i ženske bw seksualne karakteristike. Sada možemo primijeniti matematički filter: biramo jednu od ovih seksualnih karakteristika, bez obzira koju – mušku ili žensku. Ako ga osoba ima, onda ga množimo sa jedan, ako nema takvog znaka, množimo ga sa nulom. A onda koristimo redovnu školsku matematiku. Vidi šta se desilo.

Nakon množenja, redukcije i preuređivanja, na kraju smo dobili dva podskupa: podskup ljudi Bm i podskup žena Bw. Matematičari razmišljaju na približno isti način kada primjenjuju teoriju skupova u praksi. Ali oni nam ne govore detalje, već nam daju gotov rezultat - "mnogo ljudi se sastoji od podskupine muškaraca i podskupa žena." Naravno, možda imate pitanje: koliko je pravilno matematika primijenjena u gore navedenim transformacijama? Usuđujem se da vas uvjerim da su, u suštini, transformacije obavljene ispravno, dovoljno je poznavati matematičke osnove aritmetike, Bulove algebre i drugih grana matematike. Šta je to? Neki drugi put ću vam pričati o tome.

Što se tiče superskupova, možete kombinovati dva skupa u jedan superskup odabirom mjerne jedinice prisutne u elementima ova dva skupa.

Kao što vidite, mjerne jedinice i obična matematika čine teoriju skupova reliktom prošlosti. Znak da nije sve u redu sa teorijom skupova je to što su matematičari smislili svoj jezik i notaciju za teoriju skupova. Matematičari su se ponašali kao nekada šamani. Samo šamani znaju kako "ispravno" primijeniti svoje "znanje". Oni nas uče ovom "znanju".

U zaključku, želim da vam pokažem kako matematičari manipulišu.

Ponedjeljak, 07.01.2019

U petom veku pne starogrčki filozof Zenon iz Eleje je formulisao svoje čuvene aporije, od kojih je najpoznatija aporija „Ahilej i kornjača“. Evo kako to zvuči:

Recimo, Ahil trči deset puta brže od kornjače i hiljadu koraka je iza nje. Za vrijeme koje je Ahileju potrebno da pretrči ovu udaljenost, kornjača će puzati stotinu koraka u istom smjeru. Kada Ahil pretrči stotinu koraka, kornjača puzi još deset koraka, i tako dalje. Proces će se nastaviti do beskonačnosti, Ahilej nikada neće sustići kornjaču.

Ovo razmišljanje je postalo logičan šok za sve naredne generacije. Aristotel, Diogen, Kant, Hegel, Hilbert... Svi su oni na ovaj ili onaj način smatrali Zenonove aporije. Šok je bio toliko jak da je " ... rasprave se nastavljaju do danas; naučna zajednica još nije uspjela doći do zajedničkog mišljenja o suštini paradoksa ... matematička analiza, teorija skupova, novi fizički i filozofski pristupi uključeni su u proučavanje problematike ; nijedan od njih nije postao opšteprihvaćeno rešenje problema..."[Vikipedija, "Zenonova aporija". Svi razumiju da su prevareni, ali niko ne razumije u čemu se sastoji obmana.

Sa matematičke tačke gledišta, Zenon je u svojim aporijama jasno pokazao prelazak sa kvantiteta na . Ovaj prijelaz podrazumijeva primjenu umjesto stalnih. Koliko sam shvatio, matematički aparat za korištenje varijabilnih mjernih jedinica ili još nije razvijen, ili nije primijenjen na Zenonove aporije. Primjena naše uobičajene logike vodi nas u zamku. Mi, zbog inercije mišljenja, primjenjujemo stalne jedinice vremena na recipročnu vrijednost. Sa fizičke tačke gledišta, ovo izgleda kao da se vrijeme usporava dok se potpuno ne zaustavi u trenutku kada Ahil sustigne kornjaču. Ako vrijeme stane, Ahil više ne može pobjeći od kornjače.

Ako okrenemo svoju uobičajenu logiku, sve dolazi na svoje mjesto. Ahil trči konstantnom brzinom. Svaki naredni segment njegovog puta je deset puta kraći od prethodnog. Shodno tome, vrijeme utrošeno na njegovo savladavanje je deset puta manje od prethodnog. Ako u ovoj situaciji primijenimo koncept „beskonačnosti“, tada bi bilo ispravno reći „Ahilej će beskonačno brzo sustići kornjaču“.

Kako izbjeći ovu logičnu zamku? Ostanite u konstantnim jedinicama vremena i ne prelazite na recipročne jedinice. Na Zenonovom jeziku to izgleda ovako:

Za vrijeme koje je Ahileju potrebno da pretrči hiljadu koraka, kornjača će puzati stotinu koraka u istom smjeru. Za naredni vremenski interval, jednak prvom, Ahil će trčati još hiljadu koraka, a kornjača će puzati stotinu koraka. Sada je Ahil osam stotina koraka ispred kornjače.

Ovaj pristup na adekvatan način opisuje stvarnost bez ikakvih logičkih paradoksa. Ali ovo nije potpuno rješenje problema. Ajnštajnova izjava o neodoljivosti brzine svetlosti veoma je slična Zenonovoj aporiji „Ahilej i kornjača“. Ostaje nam da proučimo, preispitamo i riješimo ovaj problem. A rješenje se mora tražiti ne u beskonačno velikim brojevima, već u mjernim jedinicama.

Još jedna zanimljiva Zenonova aporija govori o letećoj strijeli:

Leteća strela je nepomična, pošto u svakom trenutku miruje, a pošto miruje u svakom trenutku, uvek miruje.

U ovoj aporiji logički paradoks je prevaziđen vrlo jednostavno - dovoljno je razjasniti da u svakom trenutku vremena leteća strijela miruje u različitim tačkama prostora, što je, u stvari, kretanje. Ovdje treba napomenuti još jednu stvar. Iz jedne fotografije automobila na cesti nemoguće je utvrditi ni činjenicu njegovog kretanja, ni udaljenost do njega. Da biste utvrdili da li se automobil kreće, potrebne su vam dvije fotografije snimljene iz iste tačke u različitim vremenskim trenucima, ali ne možete odrediti udaljenost od njih. Da biste odredili udaljenost do automobila, potrebne su vam dvije fotografije snimljene iz različitih tačaka u prostoru u jednom trenutku, ali iz njih ne možete odrediti činjenicu kretanja (naravno, još su vam potrebni dodatni podaci za proračune, trigonometrija će vam pomoći ). Ono na šta želim da skrenem posebnu pažnju jeste da su dve tačke u vremenu i dve tačke u prostoru različite stvari koje ne treba mešati, jer pružaju različite mogućnosti za istraživanje.
Pokazat ću vam proces na primjeru. Odabiremo "crvenu čvrstu boju u bubuljici" - ovo je naša "cjelina". Istovremeno, vidimo da su ove stvari sa lukom, a postoje i bez luka. Nakon toga odabiremo dio "cjeline" i formiramo set "sa mašnom". Ovako šamani dobijaju hranu vezujući svoju teoriju skupova za stvarnost.

Hajde sada da napravimo mali trik. Uzmimo "čvrsto sa bubuljicom sa mašnom" i kombinujmo ove "cjeline" prema boji, birajući crvene elemente. Imamo dosta "crvenih". Sada poslednje pitanje: da li su dobijeni setovi “sa lukom” i “crvenim” isti set ili dva različita seta? Samo šamani znaju odgovor. Tačnije, oni sami ništa ne znaju, ali kako kažu, tako će i biti.

Ovaj jednostavan primjer pokazuje da je teorija skupova potpuno beskorisna kada je stvarnost u pitanju. u čemu je tajna? Formirali smo set "crvene čvrste s bubuljicom i mašnom." Formiranje se odvijalo u četiri različite mjerne jedinice: boja (crvena), čvrstoća (puna), hrapavost (bubuljičasta), ukras (sa mašnom). Samo skup mjernih jedinica nam omogućava da adekvatno opišemo stvarne objekte jezikom matematike. Ovako to izgleda.

Slovo "a" sa različitim indeksima označava različite mjerne jedinice. U zagradama su istaknute mjerne jedinice po kojima se "cjelina" razlikuje u preliminarnoj fazi. Jedinica mjere po kojoj se skup formira vadi se iz zagrada. Posljednji red prikazuje konačni rezultat - element skupa. Kao što vidite, ako koristimo mjerne jedinice za formiranje skupa, onda rezultat ne ovisi o redoslijedu naših akcija. A ovo je matematika, a ne ples šamana s tamburama. Šamani mogu "intuitivno" doći do istog rezultata, tvrdeći da je to "očigledno", jer jedinice mjere nisu dio njihovog "naučnog" arsenala.

Koristeći mjerne jedinice, vrlo je lako podijeliti jedan set ili kombinirati nekoliko setova u jedan superset. Pogledajmo pobliže algebru ovog procesa.

Najjednostavniji broj je prirodni broj. Koriste se u svakodnevnom životu za brojanje objekata, tj. da izračuna njihov broj i redosled.

Šta je prirodan broj: prirodni brojevi imenuje brojeve na koje ste navikli brojeći stavke ili naznačiti serijski broj bilo koje stavke od svih homogenih stavke.

Integers- ovo su brojevi koji počinju od jedan. Nastaju prirodno prilikom brojanja.Na primjer, 1,2,3,4,5... -prvi prirodni brojevi.

Najmanji prirodni broj- jedan. Ne postoji najveći prirodni broj. Prilikom brojanja Nula se ne koristi, pa je nula prirodan broj.

Serija prirodnih brojeva je niz svih prirodnih brojeva. Pisanje prirodnih brojeva:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

U prirodnom nizu svaki broj je veći od prethodnog.

Koliko brojeva ima u prirodnom nizu? Prirodni niz je beskonačan; najveći prirodni broj ne postoji.

Decimala jer 10 jedinica bilo koje cifre formira 1 jedinicu najviše cifre. Pozitivno tako kako značenje cifre zavisi od njenog mesta u broju, tj. iz kategorije u kojoj je napisano.

Klase prirodnih brojeva.

Bilo koji prirodni broj može se napisati pomoću 10 arapskih brojeva:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Za čitanje prirodnih brojeva, oni su podijeljeni, počevši s desne strane, u grupe od po 3 cifre. 3 prvo brojevi sa desne strane su klasa jedinica, sledeća 3 su klasa hiljada, zatim klase miliona, milijardi iitd. Svaka od cifara klase naziva se svojimpražnjenje.

Poređenje prirodnih brojeva.

Od 2 prirodna broja, manji je broj koji se ranije poziva pri brojanju. Na primjer, broj 7 manje 11 (napisano ovako:7 < 11 ). Kada je jedan broj veći od drugog, piše se ovako:386 > 99 .

Tabela cifara i klasa brojeva.

Jedinica 1. klase

1. znamenka jedinice

2. cifre desetice

3. mjesto stotine

2. klasa hiljada

1. znamenka jedinice hiljada

2. cifra desetine hiljada

3. kategorija stotine hiljada

Milioni treće klase

1. znamenka jedinice miliona

2. kategorija desetine miliona

3. kategorija stotine miliona

4. klase milijarde

1. znamenka jedinice milijarde

2. kategorija desetine milijardi

3. kategorija stotine milijardi

Brojevi od 5. razreda i više se odnose na veliki brojevi. Jedinice 5. klase su trilioni, 6. klase klasa - kvadrilioni, 7. klasa - kvintilioni, 8. klasa - sekstiljoni, 9. klasa - eptillions.

Osnovna svojstva prirodnih brojeva.

  • Komutativnost sabiranja . a + b = b + a
  • Komutativnost množenja. ab = ba
  • Asocijativnost sabiranja. (a + b) + c = a + (b + c)
  • Asocijativnost množenja.
  • Distributivnost množenja u odnosu na sabiranje:

Operacije nad prirodnim brojevima.

4. Deljenje prirodnih brojeva je inverzna operacija množenja.

Ako b ∙ c = a, To

Formule za deljenje:

a: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(A∙ b) : c = (a:c) ∙ b

(A∙ b) : c = (b:c) ∙ a

Numerički izrazi i numeričke jednakosti.

Zapis u kojem su brojevi povezani znakovima akcije je numerički izraz.

Na primjer, 10∙3+4; (60-2∙5):10.

Zapisi u kojima su 2 numerička izraza kombinovana sa znakom jednakosti su numeričke jednakosti. Jednakost ima lijevu i desnu stranu.

Redoslijed izvođenja aritmetičkih operacija.

Sabiranje i oduzimanje brojeva su operacije prvog stepena, dok su množenje i deljenje operacije drugog stepena.

Kada se numerički izraz sastoji od radnji samo jednog stepena, one se izvode uzastopno s lijeva na desno.

Kada se izrazi sastoje od radnji samo prvog i drugog stepena, tada se radnje izvode prve drugog stepena, a zatim - radnje prvog stepena.

Kada u izrazu postoje zagrade, prvo se izvode radnje u zagradama.

Na primjer, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.